首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   409篇
  免费   27篇
  国内免费   11篇
化学   294篇
晶体学   2篇
力学   18篇
数学   50篇
物理学   83篇
  2023年   2篇
  2022年   4篇
  2021年   18篇
  2020年   19篇
  2019年   14篇
  2018年   25篇
  2017年   14篇
  2016年   29篇
  2015年   17篇
  2014年   28篇
  2013年   47篇
  2012年   44篇
  2011年   49篇
  2010年   32篇
  2009年   32篇
  2008年   22篇
  2007年   21篇
  2006年   8篇
  2005年   6篇
  2004年   5篇
  2003年   1篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1932年   1篇
排序方式: 共有447条查询结果,搜索用时 31 毫秒
21.
The complex formation reaction of the $ {\text{VO}}_{2}^{ + } $ VO 2 + cation with D-(-)-quinic acid {(1R,3R,4S,5R)-(-)-1,3,4,5-tetrahydroxycyclohexane-1-carboxylic acid} at T = 298 K, I = 0.1 mol·dm?3 of sodium chloride in various aqueous solutions of 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim]BF4, and methanol were studied by using potentiometric and UV spectrophotometric techniques. As far as we know, the calculated stability constants data presented in the current work are the first reported values for [bmim]BF4 and methanol mixed solvents. The Kamlet–Abboud–Taft solvatochromic equation enabled us to interpret the UV data and the stability constants values. The Redlich–Kister equation was applied for the calculation of solvatochromic parameters in the binary water + [bmim]BF4 mixtures. Hydrogen bonding is important for the dissociation constant in both media. In these systems the solvent polarizability and hydrogen-bond donor ability are the main interactions for the stability constants in the aqueous ionic liquid and methanol solutions, respectively.  相似文献   
22.
Mesoporous CuFe2O4 solid solution nanopowders with high specific surface areas were synthesized by a novel, very simple and inexpensive sol-gel route using propylene oxide as gelation agent, and used as the catalyst in low temperature CO oxidation. The samples were characterized by X-ray diffraction, N2 adsorption-desorption, thermogravimetric/differential thermal analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and temperature-programmed reduction. The results revealed that the samples have a nanocrystalline structure with crystals in the range of 10 to 25 nm, and that all the catalysts have mesoporous pores. The addition of Cu into iron oxide affected its structural and catalytic properties. The sample containing 15 mol% Cu showed the highest specific surface area and catalytic activity, and showed high catalytic stability in low temperature CO oxidation.  相似文献   
23.
An little known yet significant issue in petroleum production processes in petroleum reservoirs is asphaltene precipitation/deposition. Asphaltene has not only a fuzzy and vague nature but it also can cause detrimental problems like reservoir blockage and, as a result, low oil recovery. To tackle this issue, many researchers have attempted to monitor asphaltene behavior versus thermodynamic conditions. A thermodynamic micellization approach is implemented in this work to describe asphaltene precipitation behavior for two sample fluids from Iranian reservoirs. First, the basic structures of the addressed approach and different contributions to Gibbs free energy of micellization proposed by Victorov and Firoozabadi (VF) are demonstrated. Second, a detailed sensitivity analysis with respect to the model parameters is performed by utilizing a new calculation strategy. Finally, a comparison between the predicted precipitation curve and the experimental one is illustrated; moreover, comparing our results with those reported by Victorov proves the superiority of the new strategy over the conventional one. The significance of this study shows the effect of each micellization parameter on the asphaltene precipitation behavior curve and illustrates the ability of the micellization approach evolved by VF in monitoring the effect of pressure on asphaltene precipitation using the new calculation procedure. Outcomes from this study could couple with commercial reservoir simulation software to improve precision and integrity for designing robust and effective production units.  相似文献   
24.
Many tools in production technology are nowadays coated to obtain a satisfactory lifetime and degradation resistance. Therefore, the main goal of this study is to investigate antiadhesive and wear resistant coatings made of ceramics, plastics and metals produced by High Power Pulsed Magnetron Sputtering (HPPMS) technique [1]. A cohesive zone element technique (CZ) is applied to model the interactions of the coatings and the substrate surfaces (see [2]). This goes along with the investigations of the delamination and failure behavior of the involved surfaces. To illustrate the applicability of the model, several structural simulations are performed. The developed CZ element model is capable of modeling the separation, the contact and also the irreversible reloading conditions in both normal and tangential directions [3]. The model is further developed to be applicable for different structures including different bonding behaviors, with a higher stability. The talk concludes with a detailed discussion of the numerical results of different material and interface properties. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
25.
Electrochemical hydrogen storage in porous carbon materials is emerging as a cost-effective hydrogen storage and transport technology with competitive power and energy densities. The merits of electrochemical hydrogen storage using porous conductive carbon-based electrodes are reviewed. The employment of acidic electrolytes in such storage systems is compared with alkaline electrolytes. The recent innovations of a proton battery for smaller-scale electricity storage, and a proton flow reactor system for larger (grid)-scale storage and bulk export of hydrogen produced from renewable energy, are briefly described. It is argued that such systems, along with variants proposed by others, all of which rely on electrochemical hydrogen storage in porous carbons, can contribute to the search for energy storage technologies essential for the transition to a zero-emission global economy.  相似文献   
26.
This study evaluates the kinetic hydrate inhibition (KHI) performance of four quaternary ammonium hydroxides (QAH) on mixed CH4 + CO2 hydrate systems. The studied QAHs are; tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), tetramethylammonium hydroxide (TMAOH), and tetrapropylammonium hydroxide (TPrAOH). The test was performed in a high-pressure hydrate reactor at temperatures of 274.0 K and 277.0 K, and a concentration of 1 wt.% using the isochoric cooling method. The kinetics results suggest that all the QAHs potentially delayed mixed CH4 + CO2 hydrates formation due to their steric hindrance abilities. The presence of QAHs reduced hydrate formation risk than the conventional hydrate inhibitor, PVP, at higher subcooling conditions. The findings indicate that increasing QAHs alkyl chain lengths increase their kinetic hydrate inhibition efficacies due to better surface adsorption abilities. QAHs with longer chain lengths have lesser amounts of solute particles to prevent hydrate formation. The outcomes of this study contribute significantly to current efforts to control gas hydrate formation in offshore petroleum pipelines.  相似文献   
27.
Here, polymelamine formaldehyde was decorated on the surface of reduced graphene oxide whose surface was then electrodeposited with a sub-monolayer of platinum nanoparticles. The nanocomposite thus prepared was characterized using several spectroscopic methods. Using the nanocomposite as a potential electrocatalyst for carbon dioxide reduction, the products were detected by Raman spectroscopy, gas chromatography, 13C-NMR spectroscopy, and gas chromatography-mass spectrometry. The analytical results identified methanol as the main product of CO2 reduction. Moreover, analysis of the liquid products confirmed methanol as the predominant product with a current density of 0.4 mA/cm and a Faradaic efficiency of 93 %.  相似文献   
28.
A peak deconvolution procedure used for the analysis of data corresponding to simultaneous overlapping processes begins with separation of individual processes using functions such as Gaussian, Lorentzian, Weibull, and Fraser–Suzuki (FS) followed by application of kinetic analysis methods to the separated peaks. We propose a coupled peak deconvolution procedure to link the parameters of the FS functions of similar peaks in two DTG curves obtained at different linear heating rates, so that the coordinates of each peak can be obtained in a constrained manner. The proposed technique is a kinetic deconvolution method rather than a pure mathematical deconvolution technique. To analyze individual peaks in our study, the non-parametric kinetic and Freidman’s isoconversional methods have been applied to determine kinetic triplet of each process. This technique has been tested with both simulated and experimental data. Using this technique, the effects of molecular weight and degree of hydrolysis of polyvinyl alcohol (PVA) samples on reaction mechanism and activation energy of thermal degradation were studied. The presence of acetate group in the PVA samples causes thermal stability, decreases the rate of main reactions, and increases the activation energy. The results of this study may help tailor heat-resistant materials with proper choice of polymer characteristics.  相似文献   
29.
A simple, efficient, and ecofriendly procedure has been developed using propane-l,2,3-triyl tris(hydrogen sulfate) as a catalyst for the synthesis of biscoumarin derivatives in water and solvent-free conditions. The significant features of the present protocol are simplicity, environmentally benign, high yields, no chromatographic separation, and recyclability of the catalyst.  相似文献   
30.
Nanostructured -y-A12O3 with high surface area and mesoporous structure was synthesized by sol-gel method and employed as catalyst support for nickel catalysts in methane reforming with carbon dioxide. The prepared samples were characterized by XRD, N2 adsorption-desorption, TPR, TPO, TPH, NH3-TPD and SEM techniques. The BET analysis showed a high surface area of 204 m2.g-1 and a narrow pore-size distribution centered at a diameter of 5.5 nm for catalyst support. The BET results revealed that addition of lanthanum oxide to aluminum oxide decreased the specific surface area. In addition, TPR results showed that addition of lanthanum oxide increased the reducibility of nickel catalyst. The catalytic evaluation results showed an increase in methane conversion with increasing lanthanum oxide to 3 mol% and further increase in lanthanum content decreased the catalytic activity. TPO analysis revealed that the coke deposition decreased with increasing lanthanum oxide to 3 mol%. SEM and TPH analyses confirmed the formation of whisker type carbon over the spent catalysts. Addition of steam and Oxide to drv reformin feed increased the methane conversion and led to carbon free ooeration in combined orocesses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号